

MBS-003-010401

Seat No. _____

M. Sc. (Sem. IV) (CBCS) Examination

April / May- 2018

C-401 : Spectroscopy (All Branches) (Old Course)

Faculty Code: 003 Subject Code: 010401

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instruction: All questions are compulsory and carry equal marks.

1 Answer the following: (any seven)

14

- (a) Enlist the methods of simplification of complex NMR spectra.
- (b) Sketch the ¹³CNMR spectrum of ethyl phenyl acetate with labelling.
- (c) Sketch the electronic energy levels with various transitions in UV Spectroscopy.
- (d) What is a mass spectrum? Enlist various detectors used in MS technique.
- (e) The IR spectrum of methyl salicylate shows absorption bands at 3300, 3050, 2990, 1700, 1590 and 1540 cm $^{-1}$. Assign these bands.
- (f) State the nitrogen and ring rules.
- (g) When and who formulated a set of empirical rules for calculating or predicting λ_{max} in conjugated dienes and trienes?
- (h) Identify salicylic acid and m-hydroxybenzoic acid by IR technique.
- (i) Give an account of chemical ionization technique.
- (j) Draw schematic diagram of IR spectrometer.

- (a) Give an account of Mc. Lafferty rearrangement with suitable example.
- (b) Determine the structure of the compound whos peaks at m/e values 124, 122, 81, 79, 43(Base Peak), 41, 29 and 27 in the mass spectrum.
- (c) Draw block diagram of mass spectrometer with labeling and functioning of each components.
- (d) Using the mass spectrum data of 1-propanol shown below answer the questions follow its fragmentation:

m/z	27	31	42	59	60
Relative intensity	10.4	100	12.4	15.9	10.3

- (a) Draw a structure of most likely molecular ion formed and provide its m/z value.
- (b) Draw a structure of the ion responsible for the base peak at m/z = 31. Provide a reaction mechanism of the fragmentation of the molecular ion that will lead to that ion.
- (c) Likewise draw a likely structure for the ion that produced the next most intense signals.
- (d) Why does peak at m/z = 15 have such a low relative intensity?

3 Answer the following:

(a) Calculate the ¹³CNMR chemical shifts aromatic C-atoms of 2,4-dinitrophenol and 2,6-dimehtylphenol. Take base value as 128.5 ppm Following incremental shifts of aromatic C-atoms are given below:

Substituent	C-1(ipso)	C-2	C-3	C-4
ОН	+26.6	-12.7	+1.6	-7.3
NO_2	+19.6	-5.3	+0.9	+6
CH_3	+9.3	+0.7	-0.1	-2.9

14

- (b) Sketch the ¹HNMR spectrum of butanal and assign each of the protons with multiplicity and coupling constants.
- (c) Discuss the effects of solvents on UV transitions and also enlist the applications of UV spectroscopy.

4 Answer the following: (Any two)

14

- (a) An organic compound containing carbon, hydrogen and oxygen gave following spectral data;
 Mass (m/z):45, 91 (BP), 186(M⁺); UV (λ_{max}):229 and 257 nm; IR (cm⁻¹): 1710; ¹H NMR (δ): 7.2 (s, 5H), 3.5 (s, 2H), Deduce the structure of the compound and also predict ¹³CNMR signals.
- (b) Sketch the ¹HNMR of AMX system with suitable example and explain it briefly.
- (c) Distinguish following isomeric compounds by IR spectroscopy:
 - (i) $CH_3CH_2C = CH$ and $CH_3-C = C-CH_3$
 - (ii) CH_3 - CH_2 -OH and CH_3 -O- CH_3
 - (iii) (CH₃)₃-N and CH₃-CH₂-NHCH₃
 - (iv) $R-NH_2$ and $R-CONH_2$

5 Answer the following: (any three)

14

- (a) Write a Note on Nuclear Over Hauser effect
- (b) Give an account of FAB techniques and give its merits and demerits.
- (c) A compound having molecular formula $C_{10}H_{14}$ gave two signals in its 1HNMR spectrum at 0.88 δ (s, 9H) and 7.28 δ (s, 5H). Assign the structure of the compound and also predict $^{13}CNMR$ chemical shifts and principal mass fragments.
- (d) Discuss sample handling techniques in IR spectroscopy.